Particle Filter Localization

2016.02.04

Hyun Ho Jeon

CONTENTS

SLAM

- SLAM(Simultaneous localization and mapping) : In robotic mapping, simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it. Popular approximate solution methods include the particle filter and extended Kalman filter.

[^0]
Localization

GPS Global Positioning System

The problem with GPS is its really not very accurate. It's common for a car to believe to be somewhere but it has error about 2-10 meters.

If you want to reduce error -> Localization

Localization

Sense \& Move

Robot World

Robot World

Create Particles

Importance Sampling

Importance Sampling

Importance Sampling

Importance Sampling

Weight

Importance Sampling

Importance Sampling

Importance Sampling

\otimes

Resampling

Resampling

Particles
$\mathrm{N}\left\{\begin{array}{c}\left(x_{1}, y_{1}, \theta_{1}\right) \\ \left(x_{2}, y_{2}, \theta_{2}\right) \\ \vdots \\ \left(x_{N}, y_{N}, \theta_{N}\right)\end{array}\right.$

Weights
ω_{1}
ω_{2}
$:$

$$
\omega_{N}
$$

$$
W=\sum_{i}^{N} \omega_{i}
$$

Normalized Weight

$$
\alpha_{1}=\frac{\omega_{1}}{W}
$$

$$
\alpha_{2}=\frac{\omega_{2}}{W}
$$

$$
\alpha_{N}=\frac{\omega_{N}}{W}
$$

$$
\sum_{i}^{N} \alpha_{i}=1
$$

Quiz 1-1

$\mathrm{N}=5\left\{\begin{array}{lll}\text { Particles } & \text { Weights } & \begin{array}{l}\text { Normalized } \\ \text { Weight }\end{array} \\ p_{1} & \omega_{1}=0.6 & \alpha_{1}= \\ p_{1} & \omega_{2}=1.2 & \alpha_{1}= \\ p_{1} & \omega_{2}=2.4 & \alpha_{1}= \\ p_{1} & \omega_{2}=0.6 & \alpha_{1}= \\ p_{1} & \omega_{2}=1.2 & \alpha_{1}= \\ & \text { Is it possible that } p_{1} \text { is } \\ & \end{array}\right.$

Quiz 1-2

Particles
Weights
$\omega_{1}=0.6 \quad \alpha_{1}=0.1$
p_{1}

$$
\omega_{2}=1.2 \quad \alpha_{1}=0.2
$$

p_{1}

$$
\omega_{2}=2.4
$$

Normalized Weight

$$
\alpha_{1}=0.4
$$

$$
p_{1}
$$

$$
\omega_{2}=0.6
$$

$$
\alpha_{1}=0.1
$$

$$
p_{1}
$$

$$
\omega_{2}=1.2 \quad \alpha_{1}=0.2
$$

Is it possible that p_{3} is NEVER sampled?

What is the probability of NEVER sampling p_{3} ?

Resampling Wheel

Resampling Wheel

Implementation

```
void main()
{
    srand((unsigned)time(NULL));
    std::cout << "OpenCV Version:" << CV_VERSION << std::endl;
    viz::Viz3d mywindow("test");
    mywindow.showWidget("MyCoordinate", viz::WCoordinateSystem(100.0));
    robot myrobot;
myrobot = myrobot.move(0.1, 5.0);
mvwindow.spinOnce(): Create Robot
vector<double> Z = myrobot.sense();
int N = 1000;
int T = 1;//10;
Mat point_particle(1, N, CV_32FC3);
Mat point_robot(1, 1, CV_32FC3);
point_robot.at<cv::Vec3f>(0, 0)[0] = myrobot.x;
point_robot.at<cv::Vec3f>(0, 0)[1] = myrobot.y;
point_robot.at<cv::Vec3f>(0, 0)[2] = 0.;
mywindow.showWidget("robot", viz::WCloud(point_robot, viz::Color::red()));
mywindow.spinOnce();
```


Implementation

```
vector<robot> p;
for (int i = 0; i < N; i++)
{
    robot r;
    r.set_noise(0.05, 0.05, 5.0);
    p.push_back(r);
    point_particle.at<cv::Vec3f>(0, i)[0] = r.x;
    point_particle.at<cv::Vec3f>(0, i)[1] = r.y;
    point_particle.at<cv::Vec3f>(0, i)[2] = 0;
    mywindow.showWidget("particle", viz::WCloud(point_particle, viz::Color(192, 192, 192)));
    mywindow.spinOnce();
// Sleep(1);
}
I
for (int t = 0; t < T; t++)
{
myrobot = myrobot.move(0.1, 5.0);
Robot Motion &
myrobot = myrobot.move
Create Particle
```

```
point_robot.at<cv::Vec3f>(0, 0)[0] = myrobot.x;
point_robot.at<cv::Vec3f>(0, 0)[1] = myrobot.y;
point_robot.at<cv::Vec3f>(0, 0)[2] = 0;
mywindow.showWidget("robot", viz::WCloud(point_robot, viz::Color::red()));
vector<robot> p2;
    for (int i2 = 0; i2<N; i2++)
```


Implementation

Implementation - Weight

```
double robot::Gaussian(double mu, double sigma, double r_x)
    // calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma
    return exp(-(pow((mu - r_x), 2.0)) / pow(sigma, 2.0) / 2.0) / sqrt(2.0 * pi * pow(sigma, 2.0));
double robot::measurement_prob(vector<double> &measurement)
    // calculate the correct measurement
    double prob = 1.0;
    for (int i = 0; i < 4; i++)
    {
        double dist = sqrt(pow((x - landmarks[i][0]), 2.0) + pow((y - landmarks[i][1]), 2.0));
        prob *= Gaussian(dist, sense_noise, measurement[i]);
    }
    return prob;
```


Implementation

```
vector<robot> p3;
int index = int((rand() / RAND_MAX) * N);
double beta = 0.0;
double mvv = *max_element(w.begin(), w.end());
for (int i4 = 0; i4 < N; i4++)
{
    beta += ((double)rand() / (double)RAND_MAX) * 2.0 * mv;
    while (beta > w[index])
    {
        beta -= w[index];
        index = (index + 1) % N;
    }
    p3.push_back(p[index]);
    point_particle.at<cv::Vec3f>(0, i4)[0] = p3[i4].x;
    point_particle.at<cv::Vec3f>(0, i4)[1] = p3[i4].y;
    point_particle.at<cv::Vec3f>(0, i4)[2] = 0;
```


Implementation

```
            mywindow.showWidget("particle", viz::WCloud(point_particle, viz::Color(192, 192, 192)));
            mywindow.spinOnce();
        // Sleep(1);
            cout << p3[i4].x << " , " << p3[i4].y << endl;
        }
        cout << "p3.size() = " <<p3.size() << endl;
        get_position(p);
        cout << t << "." << endl;
        cout << "Ground truth : " << myrobot.x << " " << myrobot.y << " " << myrobot.orientation << endl;
        cout << "Particle filter : " << estimated_position[0] << " " << estimated_position[1] << " " << estimated_position[2] << endl!
        cout << "eval : " << eval(myrobot, p) << endl;
        if (check_output(myrobot, estimated_position))
    {
        cout << "Code check : " << "True" << endl;
    }
    else cout << "Code check : " << "False" << endl;
    }
    while (!mywindow.wasStopped())
    {
    mywindow.spinOnce();
    }
```

\}

Result

www.Bandicam.co.kr

Q\&A

비교

	State space	Belief	Efficiency	In robotics
Histogram Filter	Discrete	Multimodal	Exponential	Approximate
Kalman Filter	Continuous	Unimodal	Quadratic	Approximate
Particle Filter	Continuous	Multimodal	$?$	Approximate

Mathematical Representation

Measurement Update

$$
P(X \mid Z) \propto P(Z \mid X) P(X)
$$

Motion Update

$$
P\left(X^{\prime}\right)=\sum P\left(X^{\prime} \mid X\right) P(X)
$$

[^0]: 2005 DARPA Grand Challenge winner STANLEY performed SLAM as part of its autonomous driving system.

