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Particle Filter Localization
Monte Carlo method
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SLAM

SLAM
Localization

Control

Planning

Search

 SLAM(Simultaneous localization and mapping) : In robotic mapping, simultaneous localization and 
mapping (SLAM) is the computational problem of constructing or updating a map of an unknown 
environment while simultaneously keeping track of an agent's location within it. … … Popular 
approximate solution methods include the particle filter and extended Kalman filter.

2005 DARPA Grand Challenge winner STANLEY 
performed SLAM as part of its autonomous driving 
system.
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Localization

The problem with GPS is its really not very 
accurate. It’s common for a car to believe to 
be somewhere but it has error about 2-10 
meters. 

If you want to reduce error -> Localization

2 ~ 10m

GPS  Global Positioning System
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Localization
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Sense & Move

SENSE MOVE
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Robot World
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Robot World
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Create Particles

Particle (x, y, 𝜃)

N = 1000
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Importance Sampling

Measurement
noise
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Importance Sampling

Predicted
measurement
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Importance Sampling

Actual
measurement

Predicted
measurement
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Importance Sampling
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Importance Sampling
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Importance Sampling

Importance
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Importance Sampling

Importance
Weights
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Resampling

Particles Weights 
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Quiz 1-1

Particles Weights 

6.01 

2.12 

N = 5
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YES NO
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Quiz 1-2

Particles Weights 
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YES NO

What is the probability of 
NEVER sampling     ?3p

0.0777
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Resampling Wheel

index = U[1 … N]

for i = 1…N

𝛽 = 0

𝛽 = 𝛽 + U[0 … 2 * 𝜔𝑚𝑎𝑥 ]

while 𝜔𝑖𝑛𝑑𝑒𝑥 < 𝛽

𝛽 = 𝛽 - 𝜔𝑖𝑛𝑑𝑒𝑥

index = index+1

Pick 𝑃𝑖𝑛𝑑𝑒𝑥

index

𝜔1𝜔2

𝜔3

𝜔4
𝛽

index

𝑃3
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Resampling Wheel

𝜔1𝜔2

𝜔3

𝜔4
𝛽

index

𝑃3

𝛽
index

index

𝛽

𝑃1

𝑃1

index = U[1 … N]

for i = 1…N

𝛽 = 0

𝛽 = 𝛽 + U[0 … 2 * 𝜔𝑚𝑎𝑥 ]

while 𝜔𝑖𝑛𝑑𝑒𝑥 < 𝛽

𝛽 = 𝛽 - 𝜔𝑖𝑛𝑑𝑒𝑥

index = index+1

Pick 𝑃𝑖𝑛𝑑𝑒𝑥
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Implementation

Create Robot
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Implementation

Create Particle

Robot Motion & 
measurement Update
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Implementation

Particle Motion Update

Importance Weight
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Implementation - Weight
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Implementation

Resampling
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Implementation

Pose Estimation
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Result
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Q&A
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비교

State space Belief Efficiency In robotics

Histogram Filter Discrete Multimodal Exponential Approximate

Kalman Filter Continuous Unimodal Quadratic Approximate

Particle Filter Continuous Multimodal ? Approximate
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Mathematical Representation

Measurement Update
𝑃 𝑋 𝑍 ∝ 𝑃 𝑍 𝑋 𝑃 𝑋

Motion Update

𝑃 𝑋′ = ෍𝑃 𝑋′ 𝑋 𝑃(𝑋)


